4.3\[f(x) = \frac{1}{b-a} = \frac{1}{20} \text{ for } 10 \leq x \leq 30.\]

\[\mu = (a+b)/2 = (10+30)/2 = 20 \]
\[\sigma = \frac{b-a}{\sqrt{12}} = \frac{20}{\sqrt{12}} \approx 5.774 \]

\[\begin{array}{c|c|c}
\hline
1 & 2 & 3 \\
\hline
8.452 & 10 & 14.226 \\
14.226 & 20 & 25.774 \\
25.774 & 30 & 31.547 \\
\hline
\end{array} \]

\[\begin{aligned}
\text{a)} P(\mu - \sigma \leq x \leq \mu + \sigma) & = P(14.226 \leq x \leq 25.774) = \frac{25.774 - 14.226}{20} \\
\text{e)} P(\mu - 2\sigma \leq x \leq \mu + 2\sigma) & = P(8.452 \leq x \leq 31.547) = \frac{1}{2} = 0.5774 \\
\end{aligned} \]

\[\begin{aligned}
\text{All of these probabilities are } \frac{5}{20} = \frac{1}{4} \text{ since all of the intervals of same width included in } [10,30] \text{ have the same probability — that's what we mean by "uniform".}
\end{aligned} \]

4.1\[f(x) = (3, 3/4) \]

\[\begin{aligned}
\text{a)} \quad \text{Total Area} & = \text{Area in (1) + (2)} \\
& = (2)(1/4) + (2)(3/4) \\
& = 2/4 + 6/4 = 1.
\end{aligned} \]

\[\begin{aligned}
\text{Also } f(x) \geq 0 \text{ for } [1,3] \\
\text{so } f \text{ is a legitimate density function.}
\end{aligned} \]

\[\begin{aligned}
\text{b)} P(x \leq 2). \text{ Picture:}
\end{aligned} \]

\[\text{Area of trapezoid } = 1 \begin{array}{c|c|c}
\hline
\hline
1 & 2 & 3 \\
\hline
\hline
\end{array} \]
\[P(X \geq 2) = 1 - P(X \leq 2) = 1 - \frac{3}{8} = \frac{5}{8} \]

d) \(P(1.2 \leq X < 2.2) \).

\[
\text{Picture:}
\]

Area = \(\square + \square = (1)(3) + \frac{1}{2} (1)(2.5) = 3 + 1.25 = 4.25 \)

4.4 Uniform on 48 inches: \([0, 48]\).

\[
\text{Picture of density function:}
\]

Can recover 40 unscratched inches if scratch is in first 8 inches OR last 8 inches. We need

\[
P(X \leq 8) + P(X > 40). \quad \text{Picture:}
\]

\[
\frac{1}{48} bh + \frac{1}{48} bh = \left(\frac{8}{48} \right) \left(\frac{48}{48} \right) + \left(\frac{8}{48} \right) \left(\frac{48}{48} \right) = 16/48 = 1/3
\]

4.7 In order for a person on the 2nd floor to be on the 1st floor within 1 minute of pushing the button, we need \(X \leq 40 \) sec since it will take 20 sec.
to get down to the 1st floor.

Picture of density for \(X \):

40 seconds = \(\frac{2}{3} \) of 1 minute

\[
P(X \leq 40 \text{ sec}) = P(X \leq \frac{2}{3} \text{ min}) = bh = \left(\frac{2}{3} \right) \left(\frac{1}{2} \right) = \frac{1}{3}
\]

4.9 a) Picture

![Picture](image)

From Table N,

\[
P(Z < 2.13) = .9834
\]

b) Picture

![Picture](image)

\[
P(-1.13 < Z < 1.13) = P(Z < 1.13) - P(Z < -1.13) = .8708 - .1292 = .7416
\]

c) \(P(1.13 \leq Z) = P(Z \geq 1.13) = 1 - P(Z < 1.13) = 1 - .8708 = .1298
\]

Picture:

![Picture](image)

4.11

a) Looking for 32.28th percentile. Use table in reverse.

From table, \(Z = -1.46 \)

b) Looking for 95th percentile. Use table in reverse.

From table, \(Z = 1.645 \) (Tie, 1.64 or 1.65)

\(c) P(Z_0 \leq Z) = P(Z \geq Z_0) = 0.0519 \) means

\(P(Z \leq Z_0) = .1949. \)