Your solutions to the questions on this worksheet are due AT THE BEGINNING of class on Tuesday, February 3.

1. Explain why the intersection of two sets is always a subset of the union of these same two sets:

2. Explain (in words) how sets A and B can be mutually exclusive while also sets B and C can be mutually exclusive, but collectively A, B, and C NOT be pairwise mutually exclusive. After your explanation, draw a Venn Diagram of this situation.

3. Why does the complement of a set have to be defined in "reference to" another set?

4. Look at your Venn diagram in the notes which corresponds to the set $(A \cup B)'$. Are any of these points in set A? Are any of these points in set B? Using these two questions as motivation, can you use symbols to express $(A \cup B)'$ in a different way?

5. Look at your Venn diagram in the notes which corresponds to the set $(A \cap B)'$. Are any of these points not in the set A? Are any of these points not in the set B? Using these two questions as motivation, can you use symbols to express $(A \cap B)'$ in a different way?
6. Identify SPECIFICALLY what is wrong with the following definitions:

Function- a set of ordered pairs where each first element of the pair is matched to a second element.

Function- each first element is paired with a unique second element.

Function- a set of ordered pairs where one pair is uniquely matched with a second pair.